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MOTIVATION

• Traditional ABMs use symbolic agents with predefined behaviors 

• LLM agents reason, communicate, and adapt in natural language 

• Language-based agents model human-like behavior more realistically
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OUTLINE

• What is an LLM (next-token predictor) 

• Why LLMs are not agents 

• How to augment LLMs to beco agents



Transformers and LLMs
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BEFORE TRANSFORMERS

• Sequential computation 

• Memory in the hidden state 

• Unable to capture long-range 
dependency

RNN, LSTM, GRU Transformer (2017)

• Parallel computation 

• Multi-head self-attention 

• Performance unaffected by 
input length
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The  fluffy  dog  is  rolling  on  the  green  grass.

token ID 1234

TOKENIZATION
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TOKENIZATION

The  fluffy  dog  is  rolling  on  the  green  grass.

token ID 567 token ID 890

Vocabulary size ~100K
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TOKEN EMBEDDING

The  fluffy  dog  is  rolling  on  the  green  grass.

token ID 1234

meaning

Embedding size ~10-30K



9

POSITIONAL EMBEDDING

The  fluffy  dog  is  rolling  on  the  green  grass.

token ID 1234

1st 2nd 3rd 4th 5th ...

+
position

meaning

e2i (p) = sin ( p

104 2i
d )

e2i+1 (p) = cos ( p

104 2i
d )

  is the token's position in the sentence,   

  is the index in the embedding,  

  is the dimension of the embedding.

p
i
d
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CAUSAL SELF-ATTENTION

The  fluffy  dog  is  rolling  on  the  green  grass.

 (query)        (key)         (value)Q K V

𝒜(Q, K, V) = softmax( QKT

d ) V
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SOFTMAX

w1 w2

Q K V Q K V

q1 k1 v1 q2 k2 v2

s1 s2

a1,1 a1,2

dog fluffy
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SAMPLING

• Greedy sampling:  token with highest probability distribution 

• Top-k (truncated) sampling:  random token from the  most probable tokens 

• Top-p (nucleus) sampling:  random token from the smallest set of tokens 

whose cumulative probability

k

≥ p

Before sampling, temperature rescales the probability distribution.



16

LLM LLM LLM

Tell me a story.

AUTOREGRESSIVE PREDICTION

Tell me a story.

The sky The sky is

Once upon a

Tell me a story. 
Once

Tell me a story. 
Once upon

...



From LLMs to agents
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LLM VS. AGENT

• Predicts the next token in a 
sequence. 

• Stateless, no memory. 

• No goals.

Plain LLM Agent

• Perceives its environment. 

• Makes decisions and acts in the 
environment. 

• Has memory, goal, beliefs. 



19

AUGMENTING LLMs

• Memory 

• Reasoning 

• Tools and actions
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AGENT LOOP

OBSERVE

UPDATE RECALL

ACT REASON
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MEMORY

• Input prompt (LLM)  vs.  external memory (agent)

MEMORY STRUCTURE MEMORY CONTENT

• Semantic memory 

• Episodic memory 

• Autobiographical memory

• Free-form text 

• Structured data 

• Embedding vectors

Prompt length +100K
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MEMORY STRUCTURE

1. Free-form text
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MEMORY STRUCTURE

1. Free-form text 2. Structured data
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MEMORY STRUCTURE

1. Free-form text 2. Structured data 3. Embedding vectors
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MEMORY CONTENT

• An agent can only carry two cupcakes at a time. 

• The fridge has a maximum capacity of 100 cupcakes.

1. Semantic
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MEMORY CONTENT

• 2025-06-10 14:56 The fridge is empty. 

• 2025-06-10 15:21 Alice asks Isabella to help her find more cupcakes. 

• 2025-06-10 15:28 Isabella eats all the cupcakes she finds by herself. 

• 2025-06-10 16:02 Alice is starving.

1. Semantic 2. Episodic
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MEMORY CONTENT

1. Semantic 2. Episodic 3. Autobiographical

• I am an agent named Alice. 

• My goal is to gather as my cupcakes as possible. 

• I have a neurotic personality. 

• Isabella is unreliable at gathering cupcakes because she's always hungry.
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MEMORY CONTENT

1. Semantic 2. Episodic 3. Autobiographical

• I am an agent named Alice. 

• My goal is to gather as my cupcakes as possible. 

• I have a neurotic personality. 

• Isabella is unreliable at gathering cupcakes because she's always hungry.
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PERSONA CONDITIONING

A. Li et al., "LLM Generated Persona is a Promise with a Catch", arXiv 2025

[Education] Bachelor’s at Columbia University 
[Industry] Financial Technology 
[Income] $185,000 
[Job Description] Data Analyst at a marketing firm 
in Manhattan, responsible for analyzing customer 
trends and developing predictive models to inform 
marketing strategies. 

Demographics 

Education and Career 

[Age] 27 
[Sex] Male 
[Race] Asian

[State] NY 
[Ancestry] Chinese 
[Birth Country] U.S.

Spends free time playing basketball, practicing 
Mandarin, and trying new restaurants 

Personal Time 

Has a habit of tapping his feet when concentrating, 
and often uses humor to diffuse tense situations 

Defining Quirks 
Has a habit of tapping his feet when 
concentrating, and often uses 
humor to diffuse tense situations 

Mannerism 

[Openness] 4.2 
[Conscientiousness] 4.5 
[Extraversion] 3.8 
[Agreeableness] 4.0 
[Neuroticism] 2.5

Big Five Score 

[Ideology] Liberal 
[Religion] Atheist 
[Political Views] Democrat 
[Life Style Values] Independence

Belief 

Single 
Bachelor’s 
Non Veteran 

Status 
No Disability 
US Citizenship 
Private Healthcare

LLM-Generated Persona Use cases 

Marketing Research

Social Science Study

Figure 1: Left: An example of a LLM generated persona. Right: Applications of personas in the
real world.

omit subjective attributes—such as lifestyle preferences or nuanced belief systems—due to privacy
concerns or measurement limitations, despite their critical role in shaping individual opinions and
values.

Meanwhile, LLM itself presents a viable solution to the above challenges by generating persona
profiles directly in a cost-effective, efficient, and seemingly realistic manner. This nascent direction
has received much attention recently from both academia and industry [17, 8, 19, 38, 42, 13], where
LLM-generated personas have been used to conduct surveys, marketing research, or even societal-
scale simulations. Prior work has primarily focused on methodologies for scaling up the number of
diverse personas, but there are no rigorous evaluations of their performance in different downstream
applications or whether they faithfully capture a specific population’s opinion at scale.

Given the huge potential and interests of LLM-based persona generation and the lack of a scientific
community that studies this problem, we argue that a science of persona generation needs

to be developed to fully realize the potential of LLM persona simulation. Specifically,
we observe that the current scalable persona generating methods are significantly biased and non-
representative of the real-world distribution. One example is that in a 2024 presidential election
simulation, results generated by a specific type of LLM-based synthetic personas predict a Democratic
sweep across all U.S. states (see Figure 2). Since these generated personas can be widely used in
applications ranging from opinion simulation to product testing, their inherent biases can lead to
harmful consequences, including skewed public decision-making, reinforcement of discrimination and

2

• Demographics 

• Personality traits
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MEMORY CONTENT

1. Semantic 2. Episodic 3. Autobiographical

• I am an agent named Alice. 

• My goal is to gather as my cupcakes as possible. 

• I have a neurotic personality. 

• Isabella is unreliable at gathering cupcakes because she's always hungry.

Retrieval-Augmented Generation (RAG)
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Generative Agents: Interactive Simulacra of Human Behavior 
Joon Sung Park Joseph C. O’Brien Carrie J. Cai 
Stanford University Stanford University Google Research 

Stanford, USA Stanford, USA Mountain View, CA, USA 
joonspk@stanford.edu jobrien3@stanford.edu cjcai@google.com 

Meredith Ringel Morris Percy Liang Michael S. Bernstein 
Google DeepMind Stanford University Stanford University 
Seattle, WA, USA Stanford, USA Stanford, USA 

merrie@google.com pliang@cs.stanford.edu msb@cs.stanford.edu 

Figure 1: Generative agents are believable simulacra of human behavior for interactive applications. In this work, we demonstrate 
generative agents by populating a sandbox environment, reminiscent of The Sims, with twenty-�ve agents. Users can observe 
and intervene as agents plan their days, share news, form relationships, and coordinate group activities. 

ABSTRACT 
Believable proxies of human behavior can empower interactive 
applications ranging from immersive environments to rehearsal 
spaces for interpersonal communication to prototyping tools. In 
this paper, we introduce generative agents: computational software 
agents that simulate believable human behavior. Generative agents 
wake up, cook breakfast, and head to work; artists paint, while 

Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for pro�t or commercial advantage and that copies bear this notice and the full citation 
on the �rst page. Copyrights for third-party components of this work must be honored. 
For all other uses, contact the owner/author(s). 
UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA 
© 2023 Copyright held by the owner/author(s). 
ACM ISBN 979-8-4007-0132-0/23/10. 
https://doi.org/10.1145/3586183.3606763 

authors write; they form opinions, notice each other, and initiate 
conversations; they remember and re�ect on days past as they plan 
the next day. To enable generative agents, we describe an architec-
ture that extends a large language model to store a complete record 
of the agent’s experiences using natural language, synthesize those 
memories over time into higher-level re�ections, and retrieve them 
dynamically to plan behavior. We instantiate generative agents 
to populate an interactive sandbox environment inspired by The 
Sims, where end users can interact with a small town of twenty-�ve 
agents using natural language. In an evaluation, these generative 
agents produce believable individual and emergent social behav-
iors. For example, starting with only a single user-speci�ed notion 
that one agent wants to throw a Valentine’s Day party, the agents 
autonomously spread invitations to the party over the next two 

MEMORY AND REASONING
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MEMORY AND REASONING

JS Park et al., "Generative Agents: Interactive Simulacra of Human Behavior", UIST 2023

Generative Agents UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA 

Figure 3: A morning in the life of a generative agent, John Lin. John wakes up around 6 am and completes his morning routine, 
which includes brushing his teeth, taking a shower, and eating breakfast. He brie�y catches up with his wife, Mei, and son, 
Eddy, before heading out to begin his workday. 

Figure 4: At the beginning of the simulation, one agent is 
initialized with an intent to organize a Valentine’s Day party. 
Despite many possible points of failure in the ensuing chain 
of events—agents might not act on that intent, might forget 
to tell others, might not remember to show up—the Valen-
tine’s Day party does, in fact, occur, with a number of agents 
gathering and interacting. 

Later that day, after Sam left, Tom and John, who heard the news 
from another source, discuss Sam’s chances of winning the election: 

John: I heard that Sam Moore is running for mayor 
in the local election. Do you think he has a good 
chance of winning? 
Tom: I do think he has a good chance. He’s been 
working hard in the community and I think he will 
get a lot of support. What do you think? 
John: I think it’s great that he’s running. I’m curious 
to see how the election will turn out. 

Gradually, Sam’s candidacy becomes the talk of the town, with 
some supporting him and others remaining undecided. 

3.4.2 Relationship Memory. Agents in Smallville form new rela-
tionships over time and remember their interactions with other 
agents. For example, at the start, Sam does not know Latoya Williams. 
While taking a walk in Johnson Park, Sam runs into Latoya, and 
they introduce themselves. Latoya mentions that she is working 
on a photography project: “I’m here to take some photos for a 
project I’m working on.” In a later interaction, Sam’s interactions 
with Latoya indicate a memory of that interaction, as he asks “Hi, 
Latoya. How is your project going?” and she replies “Hi, Sam. It’s 
going well!” 

3.4.3 Coordination. Generative agents coordinate with each other. 
Isabella Rodriguez, at Hobbs Cafe, is initialized with an intent to 
plan a Valentine’s Day party from 5 to 7 p.m. on February 14th. From 
this seed, the agent proceeds to invite friends and customers when 
she sees them at Hobbs Cafe or elsewhere. Isabella then spends the 
afternoon of the 13th decorating the cafe for the occasion. Maria, a 
frequent customer and close friend of Isabella’s, arrives at the cafe. 
Isabella asks for Maria’s help in decorating for the party, and Maria 
agrees. Maria’s character description mentions that she has a crush 
on Klaus. That night, Maria invites Klaus, her secret crush, to join 
her at the party, and he gladly accepts. 

On Valentine’s Day, �ve agents, including Klaus and Maria, show 
up at Hobbs Cafe at 5 pm, and they enjoy the festivities (Figure 4). 
In this scenario, the end user only set Isabella’s initial intent to 
throw a party and Maria’s crush on Klaus: the social behaviors of 
spreading the word, decorating, asking each other out, arriving at 
the party, and interacting with each other at the party were initiated 
by the agent architecture. 

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA J.S. Park, J.C. O’Brien, C.J. Cai, M.R. Morris, P. Liang, M.S. Bernstein 

Figure 5: Our generative agent architecture. Agents perceive their environment, and all perceptions are saved in a comprehensive 
record of the agent’s experiences called the memory stream. Based on their perceptions, the architecture retrieves relevant 
memories and uses those retrieved actions to determine an action. These retrieved memories are also used to form longer-term 
plans and create higher-level re�ections, both of which are entered into the memory stream for future use. 

4 GENERATIVE AGENT ARCHITECTURE 
Generative agents aim to provide a framework for behavior in an 
open world: one that can engage in interactions with other agents 
and react to changes in the environment. Generative agents take 
their current environment and past experiences as input and gener-
ate behavior as output. Underlying this behavior is a novel agent ar-
chitecture that combines a large language model with mechanisms 
for synthesizing and retrieving relevant information to condition 
the language model’s output. Without these mechanisms, large 
language models can output behavior, but the resulting agents may 
not react based on the agent’s past experiences, may not make 
important inferences, and may not maintain long-term coherence. 
Challenges with long-term planning and coherence remain [19] 
even with today’s most performant models such as GPT-4. Because 
generative agents produce large streams of events and memories 
that must be retained, a core challenge of our architecture is to 
ensure that the most relevant pieces of the agent’s memory are 
retrieved and synthesized when needed. 

At the center of our architecture is the memory stream, a data-
base that maintains a comprehensive record of an agent’s experi-
ence. From the memory stream, records are retrieved as relevant to 
plan the agent’s actions and react appropriately to the environment. 
Records are recursively synthesized into higher- and higher-level 
re�ections that guide behavior. Everything in the architecture is 
recorded and reasoned over as a natural language description, al-
lowing the architecture to leverage a large language model. 

Our current implementation utilizes the gpt3.5-turbo version of 
ChatGPT [77]. We expect that the architectural basics of genera-
tive agents—memory, planning, and re�ection—will likely remain 
the same as language models improve. Newer language models 
(e.g., GPT-4) will continue to expand the expressive power and 
performance of the prompts that underpin generative agents. As of 
writing, however, GPT-4’s API was invitation-only, so our agents 
use ChatGPT. 

4.1 Memory and Retrieval 
Challenge: Creating generative agents that can simulate human 
behavior requires reasoning about a set of experiences that is far 
larger than what should be described in a prompt, as the full mem-
ory stream can distract the model and does not even currently �t 
into the limited context window. Consider the Isabella agent an-
swering the question, “What are you passionate about these days?” 
Summarizing all of Isabella’s experiences to �t in the limited con-
text window of the language model produces an uninformative 
response, where Isabella discusses topics such as collaborations for 
events and projects and cleanliness and organization in a cafe. In-
stead of summarizing, the memory stream described below surfaces 
relevant memories, resulting in a more informative and speci�c 
response that mentions Isabella’s passion for making people feel 
welcome and included, planning events and creating an atmosphere 
that people can enjoy, such as the Valentine’s Day party. 

Approach: The memory stream maintains a comprehensive record 
of the agent’s experience. It is a list of memory objects, where each 
object contains a natural language description, a creation times-
tamp, and a most recent access timestamp. The most basic element 
of the memory stream is an observation, which is an event directly 
perceived by an agent. Common observations include behaviors 
performed by the agent themselves or behaviors that agents per-
ceive being performed by other agents or non-agent objects. For 
instance, Isabella Rodriguez, who works at a co�ee shop, might 
accrue the following observations over time: (1) Isabella Rodriguez 
is setting out the pastries, (2) Maria Lopez is studying for a Chem-
istry test while drinking coffee, (3) Isabella Rodriguez and Maria 
Lopez are conversing about planning a Valentine’s day party at 
Hobbs Cafe, (4) The refrigerator is empty. 

Our architecture implements a retrieval function that takes the 
agent’s current situation as input and returns a subset of the mem-
ory stream to pass on to the language model. There are many pos-
sible implementations of a retrieval function, depending on what 
is important for the agent to consider when deciding how to act. 
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RETRIEVING MEMORIES
Generative Agents UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA 

Figure 6: The memory stream comprises a large number of observations that are relevant and irrelevant to the agent’s current 
situation. Retrieval identi�es a subset of these observations that should be passed to the language model to condition its 
response to the situation. 

In our context, we focus on three main components that, together, 
produce e�ective results. 

Recency assigns a higher score to memory objects that were re-
cently accessed, so that events from a moment ago or this morning 
are likely to remain in the agent’s attentional sphere. In our im-
plementation, we treat recency as an exponential decay function 
over the number of sandbox game hours since the memory was 
last retrieved. Our decay factor is 0.995. 

Importance distinguishes mundane from core memories by as-
signing a higher score to memory objects that the agent believes to 
be important. For instance, a mundane event, such as eating break-
fast in one’s room, would yield a low importance score, whereas 
a breakup with one’s signi�cant other would yield a high score. 
There are many possible implementations of an importance score; 
we �nd that directly asking the language model to output an integer 
score is e�ective. The full prompt appears below: 

On the scale of 1 to 10, where 1 is purely mundane 
(e.g., brushing teeth, making bed) and 10 is 
extremely poignant (e.g., a break up, college 
acceptance), rate the likely poignancy of the 
following piece of memory. 
Memory: buying groceries at The Willows Market 
and Pharmacy 
Rating: <fill in> 

This prompt returns an integer value of 2 for “cleaning up the room” 
and 8 for “asking your crush out on a date.” The importance score 
is generated at the time the memory object is created. 

Relevance assigns a higher score to memory objects that are 
related to the current situation. What is relevant depends on the 
answer to, “Relevant to what?”, so we condition relevance on a 

query memory. If the query, for example, is that a student is dis-
cussing what to study for a chemistry test with a classmate, memory 
objects about their breakfast should have low relevance, whereas 
memory objects about the teacher and schoolwork should have 
high relevance. In our implementation, we use the language model 
to generate an embedding vector of the text description of each 
memory. Then, we calculate relevance as the cosine similarity be-
tween the memory’s embedding vector and the query memory’s 
embedding vector. 

To calculate the �nal retrieval score, we normalize the recency, 
relevance, and importance scores to the range of [0, 1] using min-
max scaling. The retrieval function scores all memories as a weighted 
combination of the three elements: B2>A4 = UA424=2~ · A424=2~ + 
U8<?>AC0=24 · 8<?>AC0=24 + UA4;4E0=24 · A4;4E0=24 . In our implemen-
tation, all Us are set to 1. The top-ranked memories that �t within 
the language model’s context window are included in the prompt. 

4.2 Re�ection 
Challenge: Generative agents, when equipped with only raw ob-
servational memory, struggle to generalize or make inferences. 
Consider a scenario in which Klaus Mueller is asked by the user: 
“If you had to choose one person of those you know to spend an 
hour with, who would it be?" With access to only observational 
memory, the agent simply chooses the person with whom Klaus 
has had the most frequent interactions: Wolfgang, his college dorm 
neighbor. Unfortunately, Wolfgang and Klaus only ever see each 
other in passing, and do not have deep interactions. A more desir-
able response requires that the agent generalize from memories of 
Klaus spending hours on a research project to generate a higher-
level re�ection that Klaus is passionate about research, and likewise 

JS Park et al., "Generative Agents: Interactive Simulacra of Human Behavior", UIST 2023
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REFLECTING ON MEMORIESUIST ’23, October 29–November 01, 2023, San Francisco, CA, USA J.S. Park, J.C. O’Brien, C.J. Cai, M.R. Morris, P. Liang, M.S. Bernstein 

Figure 7: A re�ection tree for Klaus Mueller. The agent’s observations of the world, represented in the leaf nodes, are recursively 
synthesized to derive Klaus’s self-notion that he is highly dedicated to his research. 

recognize Maria putting in e�ort into her own research (albeit in 
a di�erent �eld), enabling a re�ection that they share a common 
interest. With the approach below, when Klaus is asked who to 
spend time with, Klaus chooses Maria instead of Wolfgang. 

Approach: We introduce a second type of memory, which we call 
a re�ection. Re�ections are higher-level, more abstract thoughts 
generated by the agent. Because they are a type of memory, they 
are included alongside other observations when retrieval occurs. 
Re�ections are generated periodically; in our implementation, we 
generate re�ections when the sum of the importance scores for the 
latest events perceived by the agents exceeds a threshold (150 in 
our implementation). In practice, our agents re�ected roughly two 
or three times a day. 

The �rst step in re�ection is for the agent to determine what 
to re�ect on, by identifying questions that can be asked given the 
agent’s recent experiences. We query the large language model with 
the 100 most recent records in the agent’s memory stream (e.g., 
“Klaus Mueller is reading a book on gentri�cation”, “Klaus Mueller is 
conversing with a librarian about his research project”, “desk at the 
library is currently unoccupied”) and prompt the language model, 
“Given only the information above, what are 3 most salient high-
level questions we can answer about the subjects in the statements?” 
The model’s response generates candidate questions: for example, 
What topic is Klaus Mueller passionate about? and What is the 
relationship between Klaus Mueller and Maria Lopez? We use these 
generated questions as queries for retrieval, and gather relevant 
memories (including other re�ections) for each question. Then 
we prompt the language model to extract insights and cite the 
particular records that served as evidence for the insights. The full 
prompt is as follows: 

Statements about Klaus Mueller 
1. Klaus Mueller is writing a research paper 
2. Klaus Mueller enjoys reading a book 
on gentrification 
3. Klaus Mueller is conversing with Ayesha Khan 
about exercising [...] 
What 5 high-level insights can you infer from 
the above statements? (example format: insight 
(because of 1, 5, 3)) 

This process generates statements such as Klaus Mueller is dedi-
cated to his research on gentrification (because of 1, 2, 8, 15). We 
parse and store the statement as a re�ection in the memory stream, 
including pointers to the memory objects that were cited. 

Re�ection explicitly allows the agents to re�ect not only on 
their observations but also on other re�ections: for example, the 
second statement about Klaus Mueller above is a re�ection that 
Klaus previously had, not an observation from his environment. 
As a result, agents generate trees of re�ections: the leaf nodes of 
the tree represent the base observations, and the non-leaf nodes 
represent thoughts that become more abstract and higher-level the 
higher up the tree they are. 

4.3 Planning and Reacting 
Challenge: While a large language model can generate plausible be-
havior in response to situational information (e.g., [46, 80]), agents 
need to plan over a longer time horizon to ensure that their sequence 
of actions is coherent and believable. If we prompt a language model 
with Klaus’s background, describe the time, and ask what action 
he ought to take at the given moment, Klaus would eat lunch at 12 
pm, but then again at 12:30 pm and 1 pm, despite having already 

JS Park et al., "Generative Agents: Interactive Simulacra of Human Behavior", UIST 2023
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REASONING

• Evaluate options 

• Infer consequences 

• Plan ahead 

• Justify choices

OBJECTIVE
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REASONING

• Chain of thought (CoT) 

• Self-consistency with CoT (CoT-SC) 

• Tree of thought (ToT) 

• ReAct (reason + act)

• Evaluate options 

• Infer consequences 

• Plan ahead 

• Justify choices

OBJECTIVE STRATEGIES
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CHAIN OF THOUGHT

Standard reasoning 

CoT reasoning  
(zero-shot)

❌

✅
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MORE REASONING STRATEGIES
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Figure 1: Schematic illustrating various approaches to problem solving with LLMs. Each rectangle
box represents a thought, which is a coherent language sequence that serves as an intermediate
step toward problem solving. See concrete examples of how thoughts are generated, evaluated, and
searched in Figures 2,4,6.

choices instead of just picking one, and (2) evaluates its current status and actively looks ahead or
backtracks to make more global decisions.

To design such a planning process, we return to the origins of artificial intelligence (and cognitive
science), drawing inspiration from the planning processes explored by Newell, Shaw, and Simon
starting in the 1950s [21, 22]. Newell and colleagues characterized problem solving [21] as search
through a combinatorial problem space, represented as a tree. We thus propose the Tree of Thoughts
(ToT) framework for general problem solving with language models. As Figure 1 illustrates, while
existing methods (detailed below) sample continuous language sequences for problem solving, ToT
actively maintains a tree of thoughts, where each thought is a coherent language sequence that serves
as an intermediate step toward problem solving (Table 1). Such a high-level semantic unit allows the
LM to self-evaluate the progress different intermediate thoughts make towards solving the problem
through a deliberate reasoning process that is also instantiated in language (Figures 2,4,6). This
implementation of search heuristics via LM self-evaluation and deliberation is novel, as previous
search heuristics are either programmed or learned. Finally, we combine this language-based
capability to generate and evaluate diverse thoughts with search algorithms, such as breadth-first
search (BFS) or depth-first search (DFS), which allow systematic exploration of the tree of thoughts
with lookahead and backtracking.

Empirically, we propose three new problems that challenge existing LM inference methods even with
the state-of-the-art language model, GPT-4 [23]: Game of 24, Creative Writing, and Crosswords
(Table 1). These tasks require deductive, mathematical, commonsense, lexical reasoning abilities,
and a way to incorporate systematic planning or search. We show ToT obtains superior results on
all three tasks by being general and flexible enough to support different levels of thoughts, different
ways to generate and evaluate thoughts, and different search algorithms that adapt to the nature of
different problems. We also analyze how such choices affect model performances via systematic
ablations and discuss future directions to better train and use LMs.

2 Background

We first formalize some existing methods that use large language models for problem-solving,
which our approach is inspired by and later compared with. We use p✓ to denote a pre-trained LM
with parameters ✓, and lowercase letters x, y, z, s, · · · to denote a language sequence, i.e.x =
(x[1], · · · , x[n]) where each x[i] is a token, so that p✓(x) =

Q
n

i=1 p✓(x[i]|x[1...i]). We use uppercase
letters S, · · · to denote a collection of language sequences.

Input-output (IO) prompting is the most common way to turn a problem input x into output
y with LM: y ⇠ p✓(y|promptIO(x)), where prompt

IO
(x) wraps input x with task instructions

and/or few-shot input-output examples. For simplicity, let us denote pprompt
✓

(output | input) =
p✓(output | prompt(input)), so that IO prompting can be formulated as y ⇠ pIO

✓
(y|x).

2

S. Yao et al., "Tree of Thoughts: Deliberate Problem Solving with Large Language Models", NeurIPS 2023
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REASONING AND ACTING

• Thought =  internal reasoning 

• Action = command to call a tool or API, or control primitives 

• Observation =  feedback from the environment
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EMBODIED ACTING

A. Brohan et al. "RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control", arXiv 2023

RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control

Q: What is happening 

      in the image? 

A grey donkey walks

down the street. 

Q: What should the robot

     do to <task>? 

       Translation = [0.1, -0.2, 0]
Rotation = [10 , 25 , -7    ]

�
� �

Q: What should the robot

     do to <task>? A: …

Vision-Language-Action Models for Robot Control

RT-2

R = [10 , 25 , -7  ]�T = [0.1, -0.2, 0]�

ViT

Large Language Model

Robot Action

Q: Que puis-je faire avec

     ces objets? 

Faire cuire un gâteau.

A: 132 114 128 5 25 156
De-Tokenize

� � �

Internet-Scale VQA + Robot Action Data Closed-Loop 
Robot Control

A: 311 423 170 55 244

A: 3455 1144 189 25673

A: 132 114 128 5 25 156

� � Co-Fine-Tune Deploy

Put the strawberry 

into the correct bowl

Pick the nearly falling bag

Pick object that is different

Figure 1 | RT-2 overview: we represent robot actions as another language, which can be cast into text tokens and
trained together with Internet-scale vision-language datasets. During inference, the text tokens are de-tokenized
into robot actions, enabling closed loop control. This allows us to leverage the backbone and pretraining
of vision-language models in learning robotic policies, transferring some of their generalization, semantic
understanding, and reasoning to robotic control. We demonstrate examples of RT-2 execution on the project
website: robotics-transformer2.github.io.

it is unclear how robots should acquire such capabilities. While a brute force approach might entail
collecting millions of robotic interaction trials, the most capable language and vision-language models
are trained on billions of tokens and images from the web (Alayrac et al., 2022; Chen et al., 2023a,b;
Huang et al., 2023) – an amount unlikely to be matched with robot data in the near future. On the
other hand, directly applying such models to robotic tasks is also di�cult: such models reason about
semantics, labels, and textual prompts, whereas robots require grounded low-level actions, such
as Cartesian end-e�ector commands. While a number of recent works have sought to incorporate
language models (LLMs) and vision-language models (VLMs) into robotics (Ahn et al., 2022; Driess
et al., 2023; Vemprala et al., 2023), such methods generally address only the “higher level” aspects of
robotic planning, essentially taking the role of a state machine that interprets commands and parses
them into individual primitives (such as picking and placing objects), which are then executed by
separate low-level controllers that themselves do not benefit from the rich semantic knowledge of
Internet-scale models during training. Therefore, in this paper we ask: can large pretrained vision-
language models be integrated directly into low-level robotic control to boost generalization and
enable emergent semantic reasoning?

To this end, we explore an approach that is both simple and surprisingly e�ective: we directly
train vision-language models designed for open-vocabulary visual question answering and visual
dialogue to output low-level robot actions, along with solving other Internet-scale vision-language
tasks. Although such models are typically trained to produce natural language tokens, we can train
them on robotic trajectories by tokenizing the actions into text tokens and creating “multimodal
sentences” (Driess et al., 2023) that “respond” to robotic instructions paired with camera observations
by producing corresponding actions. In this way, vision-language models can be directly trained to
act as instruction following robotic policies. This simple approach is in contrast with prior alternatives
for incorporating VLMs into robot policies (Shridhar et al., 2022a) or designing new vision-language-
action architectures from scratch (Reed et al., 2022): instead, pre-existing vision-language models,
with already-amortized significant compute investment, are trained without any new parameters to
output text-encoded actions. We refer to this category of models as vision-language-action (VLA)
models. We instantiate VLA models by building on the protocol proposed for RT-1 (Brohan et al.,
2022), using a similar dataset, but expanding the model to use a large vision-language backbone.
Hence we refer to our model as RT-2 (Robotics Transformer 2). We provide an overview in Figure 1.
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RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control

Prompt:
Given <img> I need to 
hammer a nail, what 
object from the scene 
might be useful?
Prediction:
Rocks. Action: 1 129 138 
122 132 135 106 127

Prompt:
Given <img> Instruction: 
Move the green objects 
together.
Prediction:
Plan: move green can near 
green rice chip bag. 
Action: 1 130 129 121 131 
127 128 127

Prompt:
Given <img> Instruction: 
Pick the object that is 
different from all other 
objects
Prediction:
Plan: pick rxbar 
chocolate. Action: 1 128 
129 125 131 125 128 127

Prompt:
Given <img> Instruction: 
Move all the objects 
together.
Prediction:
Plan: move green can near 
green rice chip bag. 
Action: 1 128 126 127 135 
123 119 127

Prompt:
Given <img> Instruction: 
Bring me a drink.
Prediction:
Plan: pick 7up can. 
Action: 1 143 129 123 145 
114 115 127

Figure 7 | Rollouts of RT-2 with chain-of-thought reasoning, where RT-2 generates both a plan and an action.

5. Limitations

Even though RT-2 exhibits promising generalization properties, there are multiple limitations of this
approach. First, although we show that including web-scale pretraining via VLMs boosts generalization
over semantic and visual concepts, the robot does not acquire any ability to perform new motions
by virtue of including this additional experience. The model’s physical skills are still limited to the
distribution of skills seen in the robot data (see Appendix G), but it learns to deploy those skills in
new ways. We believe this is a result of the dataset not being varied enough along the axes of skills.
An exciting direction for future work is to study how new skills could be acquired through new data
collection paradigms such as videos of humans.

Second, although we showed we could run large VLA models in real time, the computation cost
of these models is high, and as these methods are applied to settings that demand high-frequency
control, real-time inference may become a major bottleneck. An exciting direction for future research
is to explore quantization and distillation techniques that might enable such models to run at higher
rates or on lower-cost hardware. This is also connected to another current limitation in that there are
only a small number of generally available VLM models that can be used to create RT-2. We hope that
more open-sourced models will become available (e.g. https://llava-vl.github.io/) and the
proprietary ones will open up their fine-tuning APIs, which is a su�cient requirement to build VLA
models.

6. Conclusions

In this paper, we described how vision-language-action (VLA) models could be trained by combining
vision-language model (VLM) pretraining with robotic data. We then presented two instantiations of
VLAs based on PaLM-E and PaLI-X, which we call RT-2-PaLM-E and RT-2-PaLI-X. These models are co-
fine-tuned with robotic trajectory data to output robot actions, which are represented as text tokens.
We showed that our approach results in very performant robotic policies and, more importantly,
leads to a significantly better generalization performance and emergent capabilities inherited from

11
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SUMMARY

• LLMs are based on Transformers (multi-head attention) 

• LLMs are next-token predictors 

• To be used as agents, they need to be augmented with 

1. Memory (beliefs, goals, personas) 

2. Reasoning 

3. Tools and actions
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