
Alice Plebe
UCL Computer Science

LLM agents
19 June 2025

www.aliceplebe.com

SICSS Summer School

a.plebe@ucl.ac.uk

http://www.aliceplebe.com
mailto:a.plebe@ucl.ac.uk

2

MOTIVATION

• Traditional ABMs use symbolic agents with predefined behaviors

• LLM agents reason, communicate, and adapt in natural language

• Language-based agents model human-like behavior more realistically

3

OUTLINE

• What is an LLM (next-token predictor)

• Why LLMs are not agents

• How to augment LLMs to beco agents

Transformers and LLMs

5

BEFORE TRANSFORMERS

• Sequential computation

• Memory in the hidden state

• Unable to capture long-range
dependency

RNN, LSTM, GRU Transformer (2017)

• Parallel computation

• Multi-head self-attention

• Performance unaffected by
input length

6

The fluffy dog is rolling on the green grass.

token ID 1234

TOKENIZATION

7

TOKENIZATION

The fluffy dog is rolling on the green grass.

token ID 567 token ID 890

Vocabulary size ~100K

8

TOKEN EMBEDDING

The fluffy dog is rolling on the green grass.

token ID 1234

meaning

Embedding size ~10-30K

9

POSITIONAL EMBEDDING

The fluffy dog is rolling on the green grass.

token ID 1234

1st 2nd 3rd 4th 5th ...

+
position

meaning

e2i (p) = sin (p

104 2i
d)

e2i+1 (p) = cos (p

104 2i
d)

 is the token's position in the sentence,

 is the index in the embedding,

 is the dimension of the embedding.

p
i
d

10

CAUSAL SELF-ATTENTION

The fluffy dog is rolling on the green grass.

 (query) (key) (value)Q K V

𝒜(Q, K, V) = softmax(QKT

d) V

11

SOFTMAX

w1 w2

Q K V Q K V

q1 k1 v1 q2 k2 v2

s1 s2

a1,1 a1,2

dog fluffy

12

SOFTMAXSOFTMAX

w1 w2

Q K V Q K V

O

q(1)
1 , q(2)

1 k(1)
1 , k(2)

1 v(1)
1 , v(2)

1 q(1)
2 , q(2)

2 k(1)
2 , k(2)

2 v(1)
2 , v(2)

2

s(1)
2 s(2)

2

a1,2

dog fluffy

MULTI-HEAD
ATTENTION

13

sequence of tokens

sequence of embedding vectors
d

ec
od

er
-o

n
ly

Tr

an
sf

or
m

er
 b

lo
ck

h0 h1 …

MLP

x0

xi

xi+1

xi+2

xn

sequence of logits + softmax

sequence of contextualized vectors

14

sequence of tokens

sequence of embedding vectors
d

ec
od

er
-o

n
ly

Tr

an
sf

or
m

er
 b

lo
ck

h0 h1 …

MLP

x0

xi

xi+1

xi+2

xn

Once upon a

...

kingdom

crash

time

asleep

...

0.72

0.28

0.97

0.03

.. .

. . .

sequence of contextualized vectors

sequence of logits + softmax

15

SAMPLING

• Greedy sampling: token with highest probability distribution

• Top-k (truncated) sampling: random token from the most probable tokens

• Top-p (nucleus) sampling: random token from the smallest set of tokens

whose cumulative probability

k

≥ p

Before sampling, temperature rescales the probability distribution.

16

LLM LLM LLM

Tell me a story.

AUTOREGRESSIVE PREDICTION

Tell me a story.

The sky The sky is

Once upon a

Tell me a story.
Once

Tell me a story.
Once upon

...

From LLMs to agents

18

LLM VS. AGENT

• Predicts the next token in a
sequence.

• Stateless, no memory.

• No goals.

Plain LLM Agent

• Perceives its environment.

• Makes decisions and acts in the
environment.

• Has memory, goal, beliefs.

19

AUGMENTING LLMs

• Memory

• Reasoning

• Tools and actions

20

AGENT LOOP

OBSERVE

UPDATE RECALL

ACT REASON

21

MEMORY

• Input prompt (LLM) vs. external memory (agent)

MEMORY STRUCTURE MEMORY CONTENT

• Semantic memory

• Episodic memory

• Autobiographical memory

• Free-form text

• Structured data

• Embedding vectors

Prompt length +100K

22

MEMORY STRUCTURE

1. Free-form text

23

MEMORY STRUCTURE

1. Free-form text 2. Structured data

24

MEMORY STRUCTURE

1. Free-form text 2. Structured data 3. Embedding vectors

25

MEMORY CONTENT

• An agent can only carry two cupcakes at a time.

• The fridge has a maximum capacity of 100 cupcakes.

1. Semantic

26

MEMORY CONTENT

• 2025-06-10 14:56 The fridge is empty.

• 2025-06-10 15:21 Alice asks Isabella to help her find more cupcakes.

• 2025-06-10 15:28 Isabella eats all the cupcakes she finds by herself.

• 2025-06-10 16:02 Alice is starving.

1. Semantic 2. Episodic

27

MEMORY CONTENT

1. Semantic 2. Episodic 3. Autobiographical

• I am an agent named Alice.

• My goal is to gather as my cupcakes as possible.

• I have a neurotic personality.

• Isabella is unreliable at gathering cupcakes because she's always hungry.

28

MEMORY CONTENT

1. Semantic 2. Episodic 3. Autobiographical

• I am an agent named Alice.

• My goal is to gather as my cupcakes as possible.

• I have a neurotic personality.

• Isabella is unreliable at gathering cupcakes because she's always hungry.

29

PERSONA CONDITIONING

A. Li et al., "LLM Generated Persona is a Promise with a Catch", arXiv 2025

[Education] Bachelor’s at Columbia University
[Industry] Financial Technology
[Income] $185,000
[Job Description] Data Analyst at a marketing firm
in Manhattan, responsible for analyzing customer
trends and developing predictive models to inform
marketing strategies.

Demographics

Education and Career

[Age] 27
[Sex] Male
[Race] Asian

[State] NY
[Ancestry] Chinese
[Birth Country] U.S.

Spends free time playing basketball, practicing
Mandarin, and trying new restaurants

Personal Time

Has a habit of tapping his feet when concentrating,
and often uses humor to diffuse tense situations

Defining Quirks
Has a habit of tapping his feet when
concentrating, and often uses
humor to diffuse tense situations

Mannerism

[Openness] 4.2
[Conscientiousness] 4.5
[Extraversion] 3.8
[Agreeableness] 4.0
[Neuroticism] 2.5

Big Five Score

[Ideology] Liberal
[Religion] Atheist
[Political Views] Democrat
[Life Style Values] Independence

Belief

Single
Bachelor’s
Non Veteran

Status
No Disability
US Citizenship
Private Healthcare

LLM-Generated Persona Use cases

Marketing Research

Social Science Study

Figure 1: Left: An example of a LLM generated persona. Right: Applications of personas in the
real world.

omit subjective attributes—such as lifestyle preferences or nuanced belief systems—due to privacy
concerns or measurement limitations, despite their critical role in shaping individual opinions and
values.

Meanwhile, LLM itself presents a viable solution to the above challenges by generating persona
profiles directly in a cost-effective, efficient, and seemingly realistic manner. This nascent direction
has received much attention recently from both academia and industry [17, 8, 19, 38, 42, 13], where
LLM-generated personas have been used to conduct surveys, marketing research, or even societal-
scale simulations. Prior work has primarily focused on methodologies for scaling up the number of
diverse personas, but there are no rigorous evaluations of their performance in different downstream
applications or whether they faithfully capture a specific population’s opinion at scale.

Given the huge potential and interests of LLM-based persona generation and the lack of a scientific
community that studies this problem, we argue that a science of persona generation needs

to be developed to fully realize the potential of LLM persona simulation. Specifically,
we observe that the current scalable persona generating methods are significantly biased and non-
representative of the real-world distribution. One example is that in a 2024 presidential election
simulation, results generated by a specific type of LLM-based synthetic personas predict a Democratic
sweep across all U.S. states (see Figure 2). Since these generated personas can be widely used in
applications ranging from opinion simulation to product testing, their inherent biases can lead to
harmful consequences, including skewed public decision-making, reinforcement of discrimination and

2

• Demographics

• Personality traits

30

MEMORY CONTENT

1. Semantic 2. Episodic 3. Autobiographical

• I am an agent named Alice.

• My goal is to gather as my cupcakes as possible.

• I have a neurotic personality.

• Isabella is unreliable at gathering cupcakes because she's always hungry.

Retrieval-Augmented Generation (RAG)

31

Generative Agents: Interactive Simulacra of Human Behavior
Joon Sung Park Joseph C. O’Brien Carrie J. Cai
Stanford University Stanford University Google Research

Stanford, USA Stanford, USA Mountain View, CA, USA
joonspk@stanford.edu jobrien3@stanford.edu cjcai@google.com

Meredith Ringel Morris Percy Liang Michael S. Bernstein
Google DeepMind Stanford University Stanford University
Seattle, WA, USA Stanford, USA Stanford, USA

merrie@google.com pliang@cs.stanford.edu msb@cs.stanford.edu

Figure 1: Generative agents are believable simulacra of human behavior for interactive applications. In this work, we demonstrate
generative agents by populating a sandbox environment, reminiscent of The Sims, with twenty-�ve agents. Users can observe
and intervene as agents plan their days, share news, form relationships, and coordinate group activities.

ABSTRACT
Believable proxies of human behavior can empower interactive
applications ranging from immersive environments to rehearsal
spaces for interpersonal communication to prototyping tools. In
this paper, we introduce generative agents: computational software
agents that simulate believable human behavior. Generative agents
wake up, cook breakfast, and head to work; artists paint, while

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0132-0/23/10.
https://doi.org/10.1145/3586183.3606763

authors write; they form opinions, notice each other, and initiate
conversations; they remember and re�ect on days past as they plan
the next day. To enable generative agents, we describe an architec-
ture that extends a large language model to store a complete record
of the agent’s experiences using natural language, synthesize those
memories over time into higher-level re�ections, and retrieve them
dynamically to plan behavior. We instantiate generative agents
to populate an interactive sandbox environment inspired by The
Sims, where end users can interact with a small town of twenty-�ve
agents using natural language. In an evaluation, these generative
agents produce believable individual and emergent social behav-
iors. For example, starting with only a single user-speci�ed notion
that one agent wants to throw a Valentine’s Day party, the agents
autonomously spread invitations to the party over the next two

MEMORY AND REASONING

32

MEMORY AND REASONING

JS Park et al., "Generative Agents: Interactive Simulacra of Human Behavior", UIST 2023

Generative Agents UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

Figure 3: A morning in the life of a generative agent, John Lin. John wakes up around 6 am and completes his morning routine,
which includes brushing his teeth, taking a shower, and eating breakfast. He brie�y catches up with his wife, Mei, and son,
Eddy, before heading out to begin his workday.

Figure 4: At the beginning of the simulation, one agent is
initialized with an intent to organize a Valentine’s Day party.
Despite many possible points of failure in the ensuing chain
of events—agents might not act on that intent, might forget
to tell others, might not remember to show up—the Valen-
tine’s Day party does, in fact, occur, with a number of agents
gathering and interacting.

Later that day, after Sam left, Tom and John, who heard the news
from another source, discuss Sam’s chances of winning the election:

John: I heard that Sam Moore is running for mayor
in the local election. Do you think he has a good
chance of winning?
Tom: I do think he has a good chance. He’s been
working hard in the community and I think he will
get a lot of support. What do you think?
John: I think it’s great that he’s running. I’m curious
to see how the election will turn out.

Gradually, Sam’s candidacy becomes the talk of the town, with
some supporting him and others remaining undecided.

3.4.2 Relationship Memory. Agents in Smallville form new rela-
tionships over time and remember their interactions with other
agents. For example, at the start, Sam does not know Latoya Williams.
While taking a walk in Johnson Park, Sam runs into Latoya, and
they introduce themselves. Latoya mentions that she is working
on a photography project: “I’m here to take some photos for a
project I’m working on.” In a later interaction, Sam’s interactions
with Latoya indicate a memory of that interaction, as he asks “Hi,
Latoya. How is your project going?” and she replies “Hi, Sam. It’s
going well!”

3.4.3 Coordination. Generative agents coordinate with each other.
Isabella Rodriguez, at Hobbs Cafe, is initialized with an intent to
plan a Valentine’s Day party from 5 to 7 p.m. on February 14th. From
this seed, the agent proceeds to invite friends and customers when
she sees them at Hobbs Cafe or elsewhere. Isabella then spends the
afternoon of the 13th decorating the cafe for the occasion. Maria, a
frequent customer and close friend of Isabella’s, arrives at the cafe.
Isabella asks for Maria’s help in decorating for the party, and Maria
agrees. Maria’s character description mentions that she has a crush
on Klaus. That night, Maria invites Klaus, her secret crush, to join
her at the party, and he gladly accepts.

On Valentine’s Day, �ve agents, including Klaus and Maria, show
up at Hobbs Cafe at 5 pm, and they enjoy the festivities (Figure 4).
In this scenario, the end user only set Isabella’s initial intent to
throw a party and Maria’s crush on Klaus: the social behaviors of
spreading the word, decorating, asking each other out, arriving at
the party, and interacting with each other at the party were initiated
by the agent architecture.

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA J.S. Park, J.C. O’Brien, C.J. Cai, M.R. Morris, P. Liang, M.S. Bernstein

Figure 5: Our generative agent architecture. Agents perceive their environment, and all perceptions are saved in a comprehensive
record of the agent’s experiences called the memory stream. Based on their perceptions, the architecture retrieves relevant
memories and uses those retrieved actions to determine an action. These retrieved memories are also used to form longer-term
plans and create higher-level re�ections, both of which are entered into the memory stream for future use.

4 GENERATIVE AGENT ARCHITECTURE
Generative agents aim to provide a framework for behavior in an
open world: one that can engage in interactions with other agents
and react to changes in the environment. Generative agents take
their current environment and past experiences as input and gener-
ate behavior as output. Underlying this behavior is a novel agent ar-
chitecture that combines a large language model with mechanisms
for synthesizing and retrieving relevant information to condition
the language model’s output. Without these mechanisms, large
language models can output behavior, but the resulting agents may
not react based on the agent’s past experiences, may not make
important inferences, and may not maintain long-term coherence.
Challenges with long-term planning and coherence remain [19]
even with today’s most performant models such as GPT-4. Because
generative agents produce large streams of events and memories
that must be retained, a core challenge of our architecture is to
ensure that the most relevant pieces of the agent’s memory are
retrieved and synthesized when needed.

At the center of our architecture is the memory stream, a data-
base that maintains a comprehensive record of an agent’s experi-
ence. From the memory stream, records are retrieved as relevant to
plan the agent’s actions and react appropriately to the environment.
Records are recursively synthesized into higher- and higher-level
re�ections that guide behavior. Everything in the architecture is
recorded and reasoned over as a natural language description, al-
lowing the architecture to leverage a large language model.

Our current implementation utilizes the gpt3.5-turbo version of
ChatGPT [77]. We expect that the architectural basics of genera-
tive agents—memory, planning, and re�ection—will likely remain
the same as language models improve. Newer language models
(e.g., GPT-4) will continue to expand the expressive power and
performance of the prompts that underpin generative agents. As of
writing, however, GPT-4’s API was invitation-only, so our agents
use ChatGPT.

4.1 Memory and Retrieval
Challenge: Creating generative agents that can simulate human
behavior requires reasoning about a set of experiences that is far
larger than what should be described in a prompt, as the full mem-
ory stream can distract the model and does not even currently �t
into the limited context window. Consider the Isabella agent an-
swering the question, “What are you passionate about these days?”
Summarizing all of Isabella’s experiences to �t in the limited con-
text window of the language model produces an uninformative
response, where Isabella discusses topics such as collaborations for
events and projects and cleanliness and organization in a cafe. In-
stead of summarizing, the memory stream described below surfaces
relevant memories, resulting in a more informative and speci�c
response that mentions Isabella’s passion for making people feel
welcome and included, planning events and creating an atmosphere
that people can enjoy, such as the Valentine’s Day party.

Approach: The memory stream maintains a comprehensive record
of the agent’s experience. It is a list of memory objects, where each
object contains a natural language description, a creation times-
tamp, and a most recent access timestamp. The most basic element
of the memory stream is an observation, which is an event directly
perceived by an agent. Common observations include behaviors
performed by the agent themselves or behaviors that agents per-
ceive being performed by other agents or non-agent objects. For
instance, Isabella Rodriguez, who works at a co�ee shop, might
accrue the following observations over time: (1) Isabella Rodriguez
is setting out the pastries, (2) Maria Lopez is studying for a Chem-
istry test while drinking coffee, (3) Isabella Rodriguez and Maria
Lopez are conversing about planning a Valentine’s day party at
Hobbs Cafe, (4) The refrigerator is empty.

Our architecture implements a retrieval function that takes the
agent’s current situation as input and returns a subset of the mem-
ory stream to pass on to the language model. There are many pos-
sible implementations of a retrieval function, depending on what
is important for the agent to consider when deciding how to act.

33

RETRIEVING MEMORIES
Generative Agents UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

Figure 6: The memory stream comprises a large number of observations that are relevant and irrelevant to the agent’s current
situation. Retrieval identi�es a subset of these observations that should be passed to the language model to condition its
response to the situation.

In our context, we focus on three main components that, together,
produce e�ective results.

Recency assigns a higher score to memory objects that were re-
cently accessed, so that events from a moment ago or this morning
are likely to remain in the agent’s attentional sphere. In our im-
plementation, we treat recency as an exponential decay function
over the number of sandbox game hours since the memory was
last retrieved. Our decay factor is 0.995.

Importance distinguishes mundane from core memories by as-
signing a higher score to memory objects that the agent believes to
be important. For instance, a mundane event, such as eating break-
fast in one’s room, would yield a low importance score, whereas
a breakup with one’s signi�cant other would yield a high score.
There are many possible implementations of an importance score;
we �nd that directly asking the language model to output an integer
score is e�ective. The full prompt appears below:

On the scale of 1 to 10, where 1 is purely mundane
(e.g., brushing teeth, making bed) and 10 is
extremely poignant (e.g., a break up, college
acceptance), rate the likely poignancy of the
following piece of memory.
Memory: buying groceries at The Willows Market
and Pharmacy
Rating: <fill in>

This prompt returns an integer value of 2 for “cleaning up the room”
and 8 for “asking your crush out on a date.” The importance score
is generated at the time the memory object is created.

Relevance assigns a higher score to memory objects that are
related to the current situation. What is relevant depends on the
answer to, “Relevant to what?”, so we condition relevance on a

query memory. If the query, for example, is that a student is dis-
cussing what to study for a chemistry test with a classmate, memory
objects about their breakfast should have low relevance, whereas
memory objects about the teacher and schoolwork should have
high relevance. In our implementation, we use the language model
to generate an embedding vector of the text description of each
memory. Then, we calculate relevance as the cosine similarity be-
tween the memory’s embedding vector and the query memory’s
embedding vector.

To calculate the �nal retrieval score, we normalize the recency,
relevance, and importance scores to the range of [0, 1] using min-
max scaling. The retrieval function scores all memories as a weighted
combination of the three elements: B2>A4 = UA424=2~ · A424=2~ +
U8<?>AC0=24 · 8<?>AC0=24 + UA4;4E0=24 · A4;4E0=24 . In our implemen-
tation, all Us are set to 1. The top-ranked memories that �t within
the language model’s context window are included in the prompt.

4.2 Re�ection
Challenge: Generative agents, when equipped with only raw ob-
servational memory, struggle to generalize or make inferences.
Consider a scenario in which Klaus Mueller is asked by the user:
“If you had to choose one person of those you know to spend an
hour with, who would it be?" With access to only observational
memory, the agent simply chooses the person with whom Klaus
has had the most frequent interactions: Wolfgang, his college dorm
neighbor. Unfortunately, Wolfgang and Klaus only ever see each
other in passing, and do not have deep interactions. A more desir-
able response requires that the agent generalize from memories of
Klaus spending hours on a research project to generate a higher-
level re�ection that Klaus is passionate about research, and likewise

JS Park et al., "Generative Agents: Interactive Simulacra of Human Behavior", UIST 2023

34

REFLECTING ON MEMORIESUIST ’23, October 29–November 01, 2023, San Francisco, CA, USA J.S. Park, J.C. O’Brien, C.J. Cai, M.R. Morris, P. Liang, M.S. Bernstein

Figure 7: A re�ection tree for Klaus Mueller. The agent’s observations of the world, represented in the leaf nodes, are recursively
synthesized to derive Klaus’s self-notion that he is highly dedicated to his research.

recognize Maria putting in e�ort into her own research (albeit in
a di�erent �eld), enabling a re�ection that they share a common
interest. With the approach below, when Klaus is asked who to
spend time with, Klaus chooses Maria instead of Wolfgang.

Approach: We introduce a second type of memory, which we call
a re�ection. Re�ections are higher-level, more abstract thoughts
generated by the agent. Because they are a type of memory, they
are included alongside other observations when retrieval occurs.
Re�ections are generated periodically; in our implementation, we
generate re�ections when the sum of the importance scores for the
latest events perceived by the agents exceeds a threshold (150 in
our implementation). In practice, our agents re�ected roughly two
or three times a day.

The �rst step in re�ection is for the agent to determine what
to re�ect on, by identifying questions that can be asked given the
agent’s recent experiences. We query the large language model with
the 100 most recent records in the agent’s memory stream (e.g.,
“Klaus Mueller is reading a book on gentri�cation”, “Klaus Mueller is
conversing with a librarian about his research project”, “desk at the
library is currently unoccupied”) and prompt the language model,
“Given only the information above, what are 3 most salient high-
level questions we can answer about the subjects in the statements?”
The model’s response generates candidate questions: for example,
What topic is Klaus Mueller passionate about? and What is the
relationship between Klaus Mueller and Maria Lopez? We use these
generated questions as queries for retrieval, and gather relevant
memories (including other re�ections) for each question. Then
we prompt the language model to extract insights and cite the
particular records that served as evidence for the insights. The full
prompt is as follows:

Statements about Klaus Mueller
1. Klaus Mueller is writing a research paper
2. Klaus Mueller enjoys reading a book
on gentrification
3. Klaus Mueller is conversing with Ayesha Khan
about exercising [...]
What 5 high-level insights can you infer from
the above statements? (example format: insight
(because of 1, 5, 3))

This process generates statements such as Klaus Mueller is dedi-
cated to his research on gentrification (because of 1, 2, 8, 15). We
parse and store the statement as a re�ection in the memory stream,
including pointers to the memory objects that were cited.

Re�ection explicitly allows the agents to re�ect not only on
their observations but also on other re�ections: for example, the
second statement about Klaus Mueller above is a re�ection that
Klaus previously had, not an observation from his environment.
As a result, agents generate trees of re�ections: the leaf nodes of
the tree represent the base observations, and the non-leaf nodes
represent thoughts that become more abstract and higher-level the
higher up the tree they are.

4.3 Planning and Reacting
Challenge: While a large language model can generate plausible be-
havior in response to situational information (e.g., [46, 80]), agents
need to plan over a longer time horizon to ensure that their sequence
of actions is coherent and believable. If we prompt a language model
with Klaus’s background, describe the time, and ask what action
he ought to take at the given moment, Klaus would eat lunch at 12
pm, but then again at 12:30 pm and 1 pm, despite having already

JS Park et al., "Generative Agents: Interactive Simulacra of Human Behavior", UIST 2023

35

REASONING

• Evaluate options

• Infer consequences

• Plan ahead

• Justify choices

OBJECTIVE

36

REASONING

• Chain of thought (CoT)

• Self-consistency with CoT (CoT-SC)

• Tree of thought (ToT)

• ReAct (reason + act)

• Evaluate options

• Infer consequences

• Plan ahead

• Justify choices

OBJECTIVE STRATEGIES

37

CHAIN OF THOUGHT

Standard reasoning

CoT reasoning
(zero-shot)

❌

✅

38

MORE REASONING STRATEGIES

GĮŔũƜ

jũƜŔũƜ

GĮŔũƜ

jũƜŔũƜ

ʱÊʲˤGj ʱæʲˤ�ĵÉ

GĮŔũƜ

ˤjũƜŔũƜ

ʱçʲˤ�ĵÉˁ��

ʟʟ ʟʟ

aÊĠĵŗƓŤƆˤſĵŤò

GĮŔũƜ

ˤjũƜŔũƜ

ʱíʲˤÉĵÉˤʱĵũŗŝʲ

ʟʟ

ʟʟ

ʟʟ

ˤˤʝˤƛĎĵũĈĎƜ

)L[�FRORU��E\�<XTLDQ�

0DUN�GLIIHUHQFH�E\�FRORU

GĮŔũƜ

jũƜŔũƜ

GĮŔũƜ

jũƜŔũƜ

GĮŔũƜ

ˤjũƜŔũƜ

ʱçʲˤ�òĦƙˤ�ĵĮŝƓŝŤòĮçƆˤ
ƀƓƜĎˤ�ĵÉˤʱ�ĵÉˁ��ʲ

aÊĠĵŗƓŤƆˤſĵŤò

GĮŔũƜ

ˤjũƜŔũƜ

ʱíʲˤÉŗòòˤĵƙˤ�ĎĵũĈĎŤŝˤʱÉĵÉʲ

ʟʟ

ʟʟ

ʟʟ ʟʟ ʟʟ

ˤˤƛĎĵũĈĎƜ

ʱçʲˤ�ĎÊđĮˤĵƙˤ�ĎĵũĈĎƜˤ
�ŗĵĭŔƜđĮĈˤʱ�ĵÉʲ

ʱÊʲˤGĮŔũƜˁjũƜŔũƜˤ
�ŗĵĭŔƜđĮĈˤʱGjʲ

Figure 1: Schematic illustrating various approaches to problem solving with LLMs. Each rectangle
box represents a thought, which is a coherent language sequence that serves as an intermediate
step toward problem solving. See concrete examples of how thoughts are generated, evaluated, and
searched in Figures 2,4,6.

choices instead of just picking one, and (2) evaluates its current status and actively looks ahead or
backtracks to make more global decisions.

To design such a planning process, we return to the origins of artificial intelligence (and cognitive
science), drawing inspiration from the planning processes explored by Newell, Shaw, and Simon
starting in the 1950s [21, 22]. Newell and colleagues characterized problem solving [21] as search
through a combinatorial problem space, represented as a tree. We thus propose the Tree of Thoughts
(ToT) framework for general problem solving with language models. As Figure 1 illustrates, while
existing methods (detailed below) sample continuous language sequences for problem solving, ToT
actively maintains a tree of thoughts, where each thought is a coherent language sequence that serves
as an intermediate step toward problem solving (Table 1). Such a high-level semantic unit allows the
LM to self-evaluate the progress different intermediate thoughts make towards solving the problem
through a deliberate reasoning process that is also instantiated in language (Figures 2,4,6). This
implementation of search heuristics via LM self-evaluation and deliberation is novel, as previous
search heuristics are either programmed or learned. Finally, we combine this language-based
capability to generate and evaluate diverse thoughts with search algorithms, such as breadth-first
search (BFS) or depth-first search (DFS), which allow systematic exploration of the tree of thoughts
with lookahead and backtracking.

Empirically, we propose three new problems that challenge existing LM inference methods even with
the state-of-the-art language model, GPT-4 [23]: Game of 24, Creative Writing, and Crosswords
(Table 1). These tasks require deductive, mathematical, commonsense, lexical reasoning abilities,
and a way to incorporate systematic planning or search. We show ToT obtains superior results on
all three tasks by being general and flexible enough to support different levels of thoughts, different
ways to generate and evaluate thoughts, and different search algorithms that adapt to the nature of
different problems. We also analyze how such choices affect model performances via systematic
ablations and discuss future directions to better train and use LMs.

2 Background

We first formalize some existing methods that use large language models for problem-solving,
which our approach is inspired by and later compared with. We use p✓ to denote a pre-trained LM
with parameters ✓, and lowercase letters x, y, z, s, · · · to denote a language sequence, i.e.x =
(x[1], · · · , x[n]) where each x[i] is a token, so that p✓(x) =

Q
n

i=1 p✓(x[i]|x[1...i]). We use uppercase
letters S, · · · to denote a collection of language sequences.

Input-output (IO) prompting is the most common way to turn a problem input x into output
y with LM: y ⇠ p✓(y|promptIO(x)), where prompt

IO
(x) wraps input x with task instructions

and/or few-shot input-output examples. For simplicity, let us denote pprompt
✓

(output | input) =
p✓(output | prompt(input)), so that IO prompting can be formulated as y ⇠ pIO

✓
(y|x).

2

S. Yao et al., "Tree of Thoughts: Deliberate Problem Solving with Large Language Models", NeurIPS 2023

39

REASONING AND ACTING

• Thought = internal reasoning

• Action = command to call a tool or API, or control primitives

• Observation = feedback from the environment

40

EMBODIED ACTING

A. Brohan et al. "RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control", arXiv 2023

RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control

Q: What is happening

 in the image?

A grey donkey walks

down the street.

Q: What should the robot

 do to <task>?

 Translation = [0.1, -0.2, 0]
Rotation = [10 , 25 , -7]

�
� �

Q: What should the robot

 do to <task>? A: …

Vision-Language-Action Models for Robot Control

RT-2

R = [10 , 25 , -7]�T = [0.1, -0.2, 0]�

ViT

Large Language Model

Robot Action

Q: Que puis-je faire avec

 ces objets?

Faire cuire un gâteau.

A: 132 114 128 5 25 156
De-Tokenize

� � �

Internet-Scale VQA + Robot Action Data Closed-Loop 
Robot Control

A: 311 423 170 55 244

A: 3455 1144 189 25673

A: 132 114 128 5 25 156

� � Co-Fine-Tune Deploy

Put the strawberry

into the correct bowl

Pick the nearly falling bag

Pick object that is different

Figure 1 | RT-2 overview: we represent robot actions as another language, which can be cast into text tokens and
trained together with Internet-scale vision-language datasets. During inference, the text tokens are de-tokenized
into robot actions, enabling closed loop control. This allows us to leverage the backbone and pretraining
of vision-language models in learning robotic policies, transferring some of their generalization, semantic
understanding, and reasoning to robotic control. We demonstrate examples of RT-2 execution on the project
website: robotics-transformer2.github.io.

it is unclear how robots should acquire such capabilities. While a brute force approach might entail
collecting millions of robotic interaction trials, the most capable language and vision-language models
are trained on billions of tokens and images from the web (Alayrac et al., 2022; Chen et al., 2023a,b;
Huang et al., 2023) – an amount unlikely to be matched with robot data in the near future. On the
other hand, directly applying such models to robotic tasks is also di�cult: such models reason about
semantics, labels, and textual prompts, whereas robots require grounded low-level actions, such
as Cartesian end-e�ector commands. While a number of recent works have sought to incorporate
language models (LLMs) and vision-language models (VLMs) into robotics (Ahn et al., 2022; Driess
et al., 2023; Vemprala et al., 2023), such methods generally address only the “higher level” aspects of
robotic planning, essentially taking the role of a state machine that interprets commands and parses
them into individual primitives (such as picking and placing objects), which are then executed by
separate low-level controllers that themselves do not benefit from the rich semantic knowledge of
Internet-scale models during training. Therefore, in this paper we ask: can large pretrained vision-
language models be integrated directly into low-level robotic control to boost generalization and
enable emergent semantic reasoning?

To this end, we explore an approach that is both simple and surprisingly e�ective: we directly
train vision-language models designed for open-vocabulary visual question answering and visual
dialogue to output low-level robot actions, along with solving other Internet-scale vision-language
tasks. Although such models are typically trained to produce natural language tokens, we can train
them on robotic trajectories by tokenizing the actions into text tokens and creating “multimodal
sentences” (Driess et al., 2023) that “respond” to robotic instructions paired with camera observations
by producing corresponding actions. In this way, vision-language models can be directly trained to
act as instruction following robotic policies. This simple approach is in contrast with prior alternatives
for incorporating VLMs into robot policies (Shridhar et al., 2022a) or designing new vision-language-
action architectures from scratch (Reed et al., 2022): instead, pre-existing vision-language models,
with already-amortized significant compute investment, are trained without any new parameters to
output text-encoded actions. We refer to this category of models as vision-language-action (VLA)
models. We instantiate VLA models by building on the protocol proposed for RT-1 (Brohan et al.,
2022), using a similar dataset, but expanding the model to use a large vision-language backbone.
Hence we refer to our model as RT-2 (Robotics Transformer 2). We provide an overview in Figure 1.

2

RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control

Prompt:
Given I need to
hammer a nail, what
object from the scene
might be useful?
Prediction:
Rocks. Action: 1 129 138
122 132 135 106 127

Prompt:
Given Instruction:
Move the green objects
together.
Prediction:
Plan: move green can near
green rice chip bag.
Action: 1 130 129 121 131
127 128 127

Prompt:
Given Instruction:
Pick the object that is
different from all other
objects
Prediction:
Plan: pick rxbar
chocolate. Action: 1 128
129 125 131 125 128 127

Prompt:
Given Instruction:
Move all the objects
together.
Prediction:
Plan: move green can near
green rice chip bag.
Action: 1 128 126 127 135
123 119 127

Prompt:
Given Instruction:
Bring me a drink.
Prediction:
Plan: pick 7up can.
Action: 1 143 129 123 145
114 115 127

Figure 7 | Rollouts of RT-2 with chain-of-thought reasoning, where RT-2 generates both a plan and an action.

5. Limitations

Even though RT-2 exhibits promising generalization properties, there are multiple limitations of this
approach. First, although we show that including web-scale pretraining via VLMs boosts generalization
over semantic and visual concepts, the robot does not acquire any ability to perform new motions
by virtue of including this additional experience. The model’s physical skills are still limited to the
distribution of skills seen in the robot data (see Appendix G), but it learns to deploy those skills in
new ways. We believe this is a result of the dataset not being varied enough along the axes of skills.
An exciting direction for future work is to study how new skills could be acquired through new data
collection paradigms such as videos of humans.

Second, although we showed we could run large VLA models in real time, the computation cost
of these models is high, and as these methods are applied to settings that demand high-frequency
control, real-time inference may become a major bottleneck. An exciting direction for future research
is to explore quantization and distillation techniques that might enable such models to run at higher
rates or on lower-cost hardware. This is also connected to another current limitation in that there are
only a small number of generally available VLM models that can be used to create RT-2. We hope that
more open-sourced models will become available (e.g. https://llava-vl.github.io/) and the
proprietary ones will open up their fine-tuning APIs, which is a su�cient requirement to build VLA
models.

6. Conclusions

In this paper, we described how vision-language-action (VLA) models could be trained by combining
vision-language model (VLM) pretraining with robotic data. We then presented two instantiations of
VLAs based on PaLM-E and PaLI-X, which we call RT-2-PaLM-E and RT-2-PaLI-X. These models are co-
fine-tuned with robotic trajectory data to output robot actions, which are represented as text tokens.
We showed that our approach results in very performant robotic policies and, more importantly,
leads to a significantly better generalization performance and emergent capabilities inherited from

11

41

SUMMARY

• LLMs are based on Transformers (multi-head attention)

• LLMs are next-token predictors

• To be used as agents, they need to be augmented with

1. Memory (beliefs, goals, personas)

2. Reasoning

3. Tools and actions

Thank you!

www.aliceplebe.com a.plebe@ucl.ac.uk

http://www.aliceplebe.com
mailto:a.plebe@ucl.ac.uk

